

Recent status of the GROWTH experiment

-Gamma-ray observations at the coastal area of Japan Sea -

- (1) Background
- (2) GROWTH experiment
- (3) Observational results
 - 1. properties of thundercloud gamma rays
 - 2. relationship with lightning
 - 3. photonuclear reaction in lightning

Harufumi TSUCHIYA¹ on behalf of the GROWTH collaboration

GROWTH collaboration: T. Enoto², Y. Wada^{3,4}, Y. Furuta¹, K. Nakazawa⁵, T. Yuasa⁴, T. Matsumoto³, D. Umemoto⁴, K. Makishima³ 1 JAEA, 2 Kyoto Univ., 3 The Univ. of Tokyo, 4 RIKEN, 5 Nagoya univ.

WRMISS in Tsuruga, Sep. 5, 2018

Background

- Radiation enhancement associated with thunderstorms -

- How runaway electrons are produced in air? -

Gurevich et al., PLA 165(1992), Dwyer GRL (2003)

- Radiation enhancement in winter season -

Observations of radiation enhancements only in winter seasons at the coastal area of Japan Sea (Torii+2002,2008, Tsuchiya+2007,2011)

How electrons are accelerated to relativistic energies in a dense terrestrial atmosphere?

How those bursts are associated with lightning/ thunderclouds ?

How positrons and neutrons are produced in lightning and thunderclouds?

How lightning is triggered?

GROWTH experiment (-fy2014)

Gamma Ray Observation of Winter Thunderclouds

Observations at Kashiwazaki-Kariwa power plant (PRL 2007,2013;JGR 2011)

Start in 2006

Nal, Csl, BGO scintillation detectors and Monitoring posts

Low altitude of cloud base : < 1 km</p>

Observations at high mountains (PRL 2009; PRD 2012)

GROWTH experiment (fy2015-)

Gamma Ray Observation of Winter Thunderclouds

Kanazawa, Komatsu, Suzu (AS of 2018)(Wada, Master thesis 2017)

Mal, Csl, BGO scintillation detectors + Raspberry Pi for downsizing system

Observational results (1) General properties of long bursts

Counts histories of long bursts

Kashiwazaki+Mt. Noikrura

Duration : a few tens of sec to a few minutes

Energy spectrum Long bursts vs TGFs

Not corrected for detector response

RHESSI: 289 events(Dwyer&Smith,GRL 2005)

AGILE: 130 events (Tavani et al., PRL 2011)

GROWTH: 5 events Revised Tsuchiya et al., JGR 2011

Solution Maximum energy $TGF \sim 100 \text{ MeV}$ $GROWTH \sim 20 \text{ MeV}$ Solutions $TGF \sim 10^{16} - 10^{17}$ $GROWTH \sim 10^9 - 10^{11}$

- Long bursts have been observed by airborne detectors, high-mountain ones as well as ground-based ones. They have never been observed by detectors onboard satellites (because primarily of moving of satellites)
- It has been thought that long bursts are related to electrification of thunderclouds. We may observe them from the electrification region when it being "ON".

In order to observe the whole cycle of a long burst, we need to prepare mapping observations such as the GROWTH one. Also air-shower experiments using many detectors would be suitable for those observations. Actually, several air-shower experiments have reported thunderstorms-related enhancements
 [Tibet ASg group (Amenomori+, Proc.of ICRC2013), TA group (Abbasi+ PLA, 2017)]

 Some groups have reported increases or decreases of muon flux during thunderstorms (Alexeenko+2002, Dorman+2003, Muraki+2004).
 So far, those muon variations have been observed only at high mountains. Observational results (2) Relationship between long bursts and lightning

Relation between a long burst and lightning

Termination of long bursts just prior to lightning

Y. Wada, G. S. Bowers, T. Enoto et al, GRL 45 5700 (2018)

• Simultaneous observations of gamma rays(GROWTH and GODAT), electric field (Kamogawa team) and LF (Morimoto team) were done

Relation between a long burst and lightning

Termination of long bursts just prior to lightning

LF network detected leader development of an IC*

IC : Intra/Inter cloud discharge

Relation between a long burst and lightning

Termination of long bursts just prior to lightning

Y. Wada, G. S. Bowers, T. Enoto et al, GRL 45 5700 (2018)

Observational results (3) Photonuclear reactions in lightning

T. Enoto, Y. Wada, Y. Furuta, K. Nakazawa, T. Yuasa, K. Okuda, K. Makishima, M. Sato, Y. Sato, T. Nakano, D. Umemoto, H. Tsuchiya, Nature **551** (481) 2017

Lightning and neutron production

I970's-1990's : nuclear fusion D + D ->(2.45 MeV) + ³He
Possibility of neutron production in lightning Libby & Lukens JGR (1973)
"Positive" detections Shah+ Nature(1985), Shyam&Kaushik JGR (1999)

However,

DD Fusion : Not feasible in normal lightning environment

Extremely intense electric field would be required for detectable neutron flux (10¹⁰-10¹⁵ n) Babich+ JGR (2007)

2000's ∶ Photonuclear reaction: γ (>10.5 MeV) + ¹⁴N → n + ¹³N General General General Sciences of >10 MeV gamma rays from lightning

Much more feasible than fusion : Babich+ JGR (2007), Carlson+ JGR (2010)

Short burst associated with lightning

on February 6, 2017, 17:34:06, at Kashiwazaki station Enoto+ Nature 2017

Intensive initial spike (<~a few milliseconds, exceeds 10 MeV)

- 2. Gamma-ray afterglow (<~100 ms, <10 MeV)
- 3. Delayed annihilation gamma rays (~minute, at 0.511 MeV)

light curves and energy spectra

- Exponential decay constant of the sub-second afterglow is ~56 ms of the neutron thermalization time.
- Spectrum with a sharp cutoff at 10 MeV

Photonuclear reactions triggered by lightning

Gamma rays from neutrons and positrons

Neutrons make the gamma-ray afterglow

 Exponential decay constant of the sub-second afterglow is consistent with the theoretical prediction ~56 ms of the neutron thermalization time.

Neutrons make the gamma-ray afterglow

- Exponential decay constant of the sub-second afterglow is consistent with the theoretical prediction ~56 ms of the neutron thermalisation.
- Spectrum with a sharp cutoff at 10 MeV is well explained by prompt gamma rays from atmospheric nitrogens and surrounding materials.

 \bigcirc

Short-duration burst associated with lightning

- 1. Intensive initial spike (<~a few milliseconds, exceeds 10 MeV)
- 2. Gamma-ray afterglow (<~100 ms, <10 MeV)
- 3. Delayed annihilation gamma rays (~minute, at 0.511 MeV)

We have confirmed that photonuclear reactions occur in a lightning discharge. It is noted that Bowers et al., (GRL, 2017) also detected photonuclear neutron signals at the same coastal area of Japan sea.

☑ Time structure of this event is consistent with that proposed by Rutjes et al. (GRL,2017).

- ☑ This observation showed that radioactive isotopes such as ¹³N and ¹⁵O were produced.
- ☑¹⁴C would be also produced via ¹⁴N(n, p)¹⁴C. This means that lighting may be an additional source of ¹⁴C in the atmosphere as reported by Libby & Lukens (JGR,1973) and Babich (GRL, 2017).

Summary

The GROWTH experiment has so far observed two types of bursts; Long burst & Short burst

I Long burst :

Bremsstrahlung gamma rays emitted from electrons accelerated in thunderclouds (occasionally) annihilation gamma rays, muons

Short burst :

Bremsstrahlung gamma rays emitted from electrons accelerated in lightning (occasionally) prompt gamma rays emitted from a de-excitation nucleus

Photonuclear reactions are triggered by lightning neutrons, positrons and radioactive isotopes (¹³N, ¹⁵O, ¹⁴C)